Research
Optimization techniques which minimizes the amount of neurons in the hidden layer of a random recurrent neural network/Reservoir Computer for time series prediction. Merging Takens-based attractor reconstruction methods with machine learning, we identify a mechanism for feature extraction that can be leveraged to lower the network size.
Neuromorphic engineering aims to build processors in which hardware mimics neurons and synapses in the brain for distributed and parallel processing. Silicon Photonic chips allow for such integration.
Open Source
I developed a scattering matrix-based simulator that matches the experiment to simulate large-scale versions of these photonic systems with which we predict performance and physical constraints, including inter-channel cross-talk and bit resolution. This simulator is related to the Article Marquez, et al. (2023). Fully-integrated photonic tensor core for image convolutions. Nanotechnology, 34(39), 395201. [Link]
GitHub Repository Link.
PUBLICATIONS
2012
1. Suárez-Vargas, J.J., Márquez, B.A., & González, J.A. (2012). Highly complex optical signal generation using electro-optical systems with non-linear, non-invertible transmission functions. Applied Physics Letters, 101(7). [Link]
2014
2. Marquez, B.A., Suárez-Vargas, J.J., & Ramírez, J.A. (2014). Polynomial law for controlling the generation of n-scroll chaotic attractors in an optoelectronic delayed oscillator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 24(3). [Link]
2016
3. Marquez, B.A., & Suárez-Vargas, J.J. (2016). Deterministic Random Dynamics Generated by Non-linear Non-invertible Transformations of Oscillating Functions. Nonlinear Dynamics and Systems Theory, 16(4), 431. [Link]
4. Marquez, B.A., Larger, L., Brunner, D., Chembo, Y.K., & Jacquot, M. (2016). Interaction between Liénard and Ikeda dynamics in a nonlinear electro-optical oscillator with delayed bandpass feedback. Physical Review E, 94(6), 062208. [Link]
2018
5. Brunner, D., Penkovsky, B., Marquez, B.A., Jacquot, M., Fischer, I., & Larger, L. (2018). Tutorial: Photonic neural networks in delay systems. Journal of Applied Physics, 124(15). [Link]
6. Marquez, B.A., Larger, L., Jacquot, M., Chembo, Y.K., & Brunner, D. (2018). Dynamical complexity and computation in recurrent neural networks beyond their fixed point. Scientific Reports, 8(1), 3319. [Link]
2019
7. Marquez, B.A., Suarez-Vargas, J., & Shastri, B.J. (2019). Takens-inspired neuromorphic processor: A downsizing tool for random recurrent neural networks via feature extraction. Physical Review Research, 1(3), 033030. [Link]
8. Bangari, V., Marquez, B.A., Miller, H., Tait, A.N., Nahmias, M.A., De Lima, T. Ferreira, Peng, H.T., Prucnal, P.R., & Shastri, B.J. (2019). Digital electronics and analog photonics for convolutional neural networks (DEAP-CNNs). IEEE Journal of Selected Topics in Quantum Electronics, 26(1), 1–13. [Link]
2020
9. Marquez, B.A., Filipovich, M.J., Howard, E.R., Bangari, V., Guo, Z., Morison, H.D., De Lima, T. Ferreira, Tait, A.N., Prucnal, P.R., & Shastri, B.J. (2020). Silicon photonics for artificial intelligence applications. Photoniques, 104, 40–44. [Link]
10. Ferreira De Lima, T., Tait, A.N., Mehrabian, A., Nahmias, M.A., Huang, C., Peng, H.-T., Marquez, B.A., Miscuglio, M., El-Ghazawi, T., Sorger, V.J., et al. (2020). Primer on silicon neuromorphic photonic processors: architecture and compiler. Nanophotonics, 9(13), 4055–4073. [Link]
11. Marquez, B.A., Morison, H., Guo, Z., Filipovich, M., Prucnal, P.R., & Shastri, B.J. (2020). Graphene-based photonic synapse for multi wavelength neural networks. MRS Advances, 5(37-38), 1909–1917. [Link]
2021
12. Marquez, B.A., Guo, Z., Morison, H., Shekhar, S., Chrostowski, L., Prucnal, P., & Shastri, B.J. (2021). Photonic pattern reconstruction enabled by on-chip online learning and inference. Journal of Physics: Photonics, 3(2), 024006. [Link]
2022
13. Huang, C., Sorger, V.J., Miscuglio, M., Al-Qadasi, M., Mukherjee, A., Lampe, L., Nichols, M., Tait, A.N., Ferreira de Lima, T., Marquez, B.A., et al. (2022). Prospects and applications of photonic neural networks. Advances in Physics: X, 7(1), 1981155. [Link]
14. Filipovich, M.J., Guo, Z., Al-Qadasi, M., Marquez, B.A., Morison, H.D., Sorger, V.J., Prucnal, P.R., Shekhar, S., & Shastri, B.J. (2022). Silicon photonic architecture for training deep neural networks with direct feedback alignment. Optica, 9(12), 1323–1332. [Link]
15. Singh, J., Morison, H., Guo, Z., Marquez, B.A., Esmaeeli, O., Prucnal, P.R., Chrostowski, L., Shekhar, S., & Shastri, B.J. (2022). Neuromorphic photonic circuit modeling in Verilog-A. APL Photonics, 7(4). [Link]
16. Guo, Z., Tait, A.N., Marquez, B.A., Filipovich, M., Morison, H., Prucnal, P.R., Chrostowski, L., Shekhar, S., & Shastri, B.J. (2022). Multi-level encoding and decoding in a scalable photonic tensor processor with a photonic general matrix multiply (GeMM) compiler. IEEE Journal of Selected Topics in Quantum Electronics, 28(6), 1–14. [Link]
2023
17. Marquez, B.A., Singh, J., Morison, H., Guo, Z., Chrostowski, L., Shekhar, S., Prucnal, P., & Shastri, B.J. (2023). Fully-integrated photonic tensor core for image convolutions. Nanotechnology, 34(39), 395201. [Link]
2025
18. Lam, S., Khaled, A., Bilodeau, S., Marquez, B.A., Prucnal, P.R., Chrostowski, L., Shastri, B.J., & Shekhar, S. (2024). Dynamic Electro-Optic Analog Memory for Neuromorphic Photonic Computing. arXiv preprint arXiv:2401.16515. [Link]
PATENTS
1. Marquez, B.A. Bit-corrector circuits for photonic circuits with cascaded photonic gates. US Patent 12,032,023, 2024 [Link]
2. Marquez, B.A., Shastri, B.J., & Wightman, D.H. Analog memory for photonic circuits. US Patent App. 18/155,414, 2024
3. Marquez, B.A. Processor Circuit for Generating Ultrafast Clock Multiplier. US Patent 12,216,382, 2025 [Link]
4. Marquez, B.A., et al. Design of Photonic Super-Gates. US Patent App. 18/436,415, 2024
5. Marquez, B.A., et al. Cascadable Photonic Circuits with Nonlinear Amplitude Thresholders. US Patent App. 18/232,017, 2025
6. Marquez, B.A., et al. Cascadable Photonic Circuits with Semiconductor Optical Amplifier Based Amplitude Thresholder. US Patent App. 18/446,865, 2025
7. Khaled, A., Marquez, B.A., et al. (2023). Design of Photonic Logic Gates Based on S-Matrix Optimization. US Patent App. 18/204,220, 2024
8. Marquez, B.A., & Shastri, B.J., & Wightman, D.H. (2023). Photonic Implementation of Keys Update and Hash Generation for Digital Currency Transactions. US Patent 12,219,050, 2025 [Link]
9. Marquez, B.A., & Shastri, B.J., & Wightman, D.H. (2023). Photonic Implementation of Message Generation for Digital Currency Transactions. US Patent App. 17/991,577, 2023
CONFERENCES
2015
1. Larger, L., Marquez, B., Baylon-Fuentes, A., Martinenghi, R., Jacquot, M., Chembo, Y., & Udaltsov, V. (2015). Photonic nonlinear delay dynamics for advanced information processing: from secure chaos communications to brain-inspired computing. IEICE Proceedings Series, 47(B3L-A-6).
2016
2. Marquez, B.A. (2016). Dynamical optics experiments with spatial light modulator based on a neuromorphic approach. In Nonlinear dynamics in photonics for future information and communication technologies.
3. Larger, L., Marquez, B., Penkovsky, B., Jacquot, M., Chembo, Y., & Brunner, D. (2016). Space-Time Analogy in Delay Systems for Chimera States and Reservoir Computing. IEICE Proceedings Series, 48(C2L-B-1).
4. Baylón-Fuentes, A., Martinenghi, R., Zaldívar-Huerta, I., Márquez, B.A., Udaltsov, V.S., Jacquot, M., Chembo, Y.K., & Larger, L. (2016). Reservoir Computing ultra-rapide basé sur une dynamique non linéaire électro-optique en phase. Rencontre du NonLinéaire, 13.
5. Marquez, B.A., Larger, L., Brunner, D., Chembo, K.Y., & Jacquot, M. (2016). Interaction between Liénard and Ikeda dynamics in a nonlinear electro-optical oscillator with delayed feedback. In Workshop on Dynamics of Delay Equations, Theory and Applications.
6. Marquez, B.A., Larger, L., Brunner, D., Chembo, K.Y., & Jacquot, M. (2016). Bifurcation of spiral-shaped patterns in the phase space of a nonlinear delayed electro-optic system. In Dynamics Days Europe.
2017
7. Marquez, B.A., Suarez-Vargas, J., Larger, L., Jacquot, M., Chembo, Y.K., & Brunner, D. (2017). Embedding in Neural Networks: a-priori design of hybrid computers for prediction. In 2017 IEEE International Conference on Rebooting Computing (ICRC) (pp. 1–4). IEEE.
2019
8. Bangari, V., Marquez, B.A., Tait, A.N., Nahmias, M.A., De Lima, T. Ferreira, Peng, H.T., Prucnal, P.R., & Shastri, B.J. (2019). Neuromorphic photonics for deep learning. In 2019 IEEE Photonics Conference (IPC) (pp. 1–2). IEEE.
2020
9. Shastri, B.J., Marquez, B.A., Tait, A.N., De Lima, T. Ferreira, Peng, H.-T., Huang, C., & Prucnal, P.R. (2020). Silicon Photonic Neural Networks and Applications. In 2020 Photonics North (PN) (pp. 1–1). IEEE.
10. Filipovich, M.J., Guo, Z., Marquez, B.A., Morison, H.D., & Shastri, B.J. (2020). Training deep neural networks in situ with neuromorphic photonics. In 2020 IEEE Photonics Conference (IPC) (pp. 1–2). IEEE.
11. Howard, E.R., Marquez, B.A., & Shastri, B.J. (2020). Photonic long-short term memory neural networks with analog memory. In 2020 IEEE Photonics Conference (IPC) (pp. 1–2). IEEE.
12. Masson, Y., Marquez, B.A., & Shastri, B.J. (2020). Silicon photonic neural networks for chaos-based secure communication. In 2020 IEEE Photonics Conference (IPC) (pp. 1–2). IEEE.
13. Marquez, B.A., Morison, H., Guo, Z., Filipovich, M., & Shastri, B.J. (2020). A graphene-based synapse for photonic neural networks. In 2020 IEEE Photonics Conference (IPC) (pp. 1–2). IEEE.
14. Shastri, B.J., Marquez, B.A., Filipovich, M., Guo, Z., Howard, E.R., Morison, H., Tait, A.N., De Lima, T. Ferreira, Huang, C., & Prucnal, P.R. (2020). Silicon Photonics for AI Hardware. In Integrated Photonics Research, Silicon and Nanophotonics (pp. IM2A–2). Optica Publishing Group.
15. Shastri, B.J., De Lima, T. Ferreira, Huang, C., Marquez, B.A., & Shastri, B.J. (2020). Neuromorphic photonics: current status and challenges. In 2020 European Conference on Optical Communications (ECOC) (pp. 1–4). IEEE.
2021
16. Marquez, B.A., Guo, Z., Morison, H., Shekhar, S., Chrostowski, L., Prucnal, P., & Shastri, B.J. (2021). On-chip online learning and inference for photonic pattern recognition. In CLEO: Science and Innovations (pp. SM1B–5). Optica Publishing Group.
17. Shastri, B.J., Bilodeau, S., Marquez, B.A., Tait, A.N., De Lima, T. Ferreira, Huang, C., Chrostowski, L., Shekhar, S., & Prucnal, P.R. (2021). Neuromorphic photonic networks. In Optical Fiber Communication Conference (pp. Th5A–2). Optica Publishing Group.
18. Shastri, B.J., De Lima, T. Ferreira, Huang, C., Marquez, B.A., Shekhar, S., Chrostowski, L., & Prucnal, P.R. (2021). Silicon Photonics for Artificial Intelligence and Neuromorphic Computing. In 2021 IEEE Photonics Society Summer Topicals Meeting Series (SUM) (pp. 1–2). IEEE.
19. Huang, C., De Lima, T. Ferreira, Tait, A.N., Marquez, B.A., Shastri, B.J., & Prucnal, P.R. (2021). Neuromorphic Photonics for Intelligent Signal Processing. In 2021 IEEE Photonics Conference (IPC) (pp. 1–2). IEEE.
20. Guo, Z., Marquez, B.A., Filipovich, M., Morison, H., Shastri, B.J., Chrostowski, L., Shekhar, S., & Prucnal, P. (2021). Multi-level Encoding and Decoding in a Wavelength-Multiplexed Photonic Tensor Processor. In 2021 IEEE 17th International Conference on Group IV Photonics (GFP) (pp. 1–2). IEEE.
21. Singh, J., Morison, H., Guo, Z., Marquez, B.A., Esmaeeli, O., Prucnal, P.R., Chrostowski, L., & Shastri, B.J. (2021). Circuit modeling for neuromorphic photonics in Verilog-A as a scalable simulation platform. In 2021 IEEE 17th International Conference on Group IV Photonics (GFP) (pp. 1–2). IEEE.